JETIR.ORG ISSN: 2349-5162 | ESTD Year : 2014 | Monthly Issue JOURNAL OF EMERGING TECHNOLOGIES AND INNOVATIVE RESEARCH (JETIR)

An International Scholarly Open Access, Peer-reviewed, Refereed Journal

$g^{**}\beta$ - CLOSED SETS IN TOPOLOGICAL SPACES

1. Dr. T. Delcia

Assistant Professor, Department of Mathematics, St.John's College, Palayamkottai, affiliated to Manomaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamilnadu, India.

2. M.S. Thillai

M.phil Research Scholar, Department of Mathematics , St.John's College, Palayamkottai, affiliated to Manomaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012 , Tamilnadu, India

Abstract

Topology is an area of mathematics concerned with the properties of space that are preserved under continuous deformations including stretching and bending bur not tearing.

After the work of **Levine** in 1970, on generalized closed sets (briefly g-closed sets), several mathematicians turned attention to the various forms of generalized closed sets in Topology. Extensive research on generalizing closedness was done in recent years as notions of semi-generalized, generalized semi-closed, generalized α - closed, δ – generalized closed sets are investigated.

The aim of this paper is to introduce the concept of $g^{**}\beta$ – closed sets and investigate their basic properties. We also discuss their relationship with already existing concepts.

Keywords: $g^{**}\beta$ closed, g^{*} closed, generalized semi- closed sets (briefly gs-closed), an generalized semi-pre closed set (briefly gsp-closed).

I. INTRODUCTION

Levine introduced the class of semi open sets in 1963 [11] and g-closed sets [12] in 1970. M.K.R.S.Veerakumar [1] introduced g^* - closed sets in 1991. P.M.Helen [9] introduced g^{**} - closed sets . H.Sujitha [6] introduced $g^*\beta$ - closed sets. We introduce a new class of sets called $g^{**}\beta$ – closed sets, which is properly placed in between the class of closed sets and the class of gs – closed sets.

II. PRELIMINARIES

Throughout this paper (X,τ) represent the non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X, τ) , cl (A) and int (A) denote the closure and interior of A respectively.

A.Definition

A subset A of a topological space (X,τ) is called

1) a pre-open set [14] is $A \subseteq ($ int cl (A)) and (cl (A)) and a pre –closed set if cl (int (A)) $\subseteq A$

JETIR2303805 Journal of Emerging Technologies and Innovative Research (JETIR) <u>www.jetir.org</u> i29

- 2) a semi-open set [11] if $A \subseteq cl$ (int (A) and semi-closed set if int (cl (A)) $\subseteq A$
- 3) a semi –pre open set [10] if $A \subseteq cl$ (int (cl(A)) and a semi pre-closed set [10] if int (cl (int (A)) $\subseteq A$
- 4) an X-open set [5] if $A \subseteq$ int (cl (int (A))) and an x-closed set if cl (int (cl (A))) $\subseteq A$
- 5) a regular-open set [4] if int (cl (A)) = A and regular –closed set if A = cl(int(A))

B. Definition

A subset A of a topological space (X,τ) is called

- i) generalized closed set (briefly g-closed) [12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ is open in (X,τ)
- ii) g^* closed if [1] cl(A) \subseteq U whenever $A \subseteq$ U and U is g^* in (X, τ)
- iii) genera; ozed semi-closed set (briefly gs –closed [13] is scl (A) \subseteq U whenever $A \subseteq$ U and U is open in (X, τ)
- iv) an generalized semi pre-closed set (briefly gsp-closed [3] if spcl (A) \subseteq U whenever $A \subseteq$ U and U is open in (X, τ)
- v) regular generalized closed set (briefly rg-closed) [7] if cl (A) \subseteq U whenever $A \subseteq$ U and regular open in (X, τ)
- vi) g^{**} -closed [9] if cl(A) \subseteq U whenever $A \subseteq$ U and U is open in (X, τ)
- vii) generalized pre regular –closed sett (briefly gpr –closed) [4] if pcl (A) \subseteq U whenever $A \subseteq$ U and U is regular open in (X, τ)
- viii) generalized pre –closed set (briefly gp-closed [5] if pcl(A) whenever $A \subseteq U$ and U is open in (X, τ)
- ix) $g^*\beta$ -closed [6] if β cl (A) \subseteq U whenever A \subseteq U and U is g^* -open in X
- x) semi generalized closed (briefly sg-closed) [2] if scl(A) whenever A \subseteq U and U is semi-open in (X, τ)

C. Notations used:

- i) gcl(A) generalized closure of A
- ii) scl (A)- semi closure of A
- iii) pcl(A) pre-closure of A

III. BASIC PROPERTIES OF G**β - CLOSE<mark>D SETS</mark>

We now introduce the following definitions

Definition 3.1

A subset A of (X, τ) is said to be $g^{**\beta}$ - closed set if gcl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $g^*\beta$ - open X. The complement of $g^{**\beta}$ - closed set is $g^{**\beta}$ - open. The collection of all $g^{**\beta}$ - closed and $g^{**\beta}$ - open sets are denoted $G^{**\beta}$ - C(X) and $G^{**\beta}$ - O(X).

Theorem 3.2

Every closed set is $g^{**\beta}$ -closed.

Proof :- Let A be a closed set in X. Let $A \subseteq U$ and U is $g^*\beta$ - open .Since A is closed ,cl(A) $\subseteq U$

But $gcl(A) \subseteq cl(A) \subseteq U \Rightarrow gcl(A) \subseteq U$. Hence A is $g^{**}\beta$ -closed.

Remark 3.3

Example 3.4 shows that the converse of the above theorem is not true.

Example 3.4

Let X={a,b,c} , $\tau = \{ \varnothing, X, \{a\} \},$ then A ={b} is g**\beta- closed but not closed set

Theorem 3.5

Every g^* - closed set is $g^{**\beta}$ closed

Proof:- Let A be a g^* - closed set X. Let $A \subseteq U$ and U is $g^*\beta$ - open. But all $g^*\beta$ - open sets are g - open sets. Thus, $A \subseteq U$ and U is $g^*\beta$ - open \Rightarrow cl(A) $\subseteq U$ (\because A is g^* closed set) But gcl(A) \subseteq cl(A) $\subseteq U \Rightarrow$ gcl (A) $\subseteq U$. Hence A is $g^{**}\beta$ - closed.

Remark 3.6

Example 3.7 shows that the converse of the above theorem is not true

Example 3.7

Let X = {a, b, c} with $\tau = \{\emptyset, X, \{a, b\}\}$ then A {a, c} is $g^{**}\beta$ - closed but not a g^* - closed

Proposition 3.8

Every α -closed set is $g^{**}\beta$ - closed

Proof follows from the definition

Proposition 3.9

Every g^{**} - closed sett is $g^{**}\beta$ - closed

Proof follows from the definition

Proposition 3.10

Every g - closed set is $g^{**\beta}$ - closed

Proof follows from the definition

Proposition 3.11

Every β - closed set is g^{**} - closed

Proof follows from the definition

Example 3.12

Let $X = \{a,b,c\}, \tau = \{\emptyset, X, \{a, b\}\}$ then $A = \{b\}$ is $g^{**}\beta$ - closed but not α - closed.

Example 3.13

Let $X = \{a, b, c, d\}, \tau = \{\emptyset, X, \{a\}, \{b\} \{a, b, c\}\}$ Let $A = \{c\}$ is a $g^{**}\beta$ - closed set but not a g^{**} - closed set. So the class of $g^{**}\beta$ - closed sets properly contains the class of closed sets and the class of g^{**} - closed sets. Also $\{c\}$ is not a g - closed set.

Example 3.14

Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}\}$. Then $A = \{a, b\}$ is a $g^{**}\beta$ - closed set but not a β - closed.

Theorem 3.15

If A and B are g^{**} - closed sets, then AUB is also a $g^{**\beta}$ - closed in X.

Proof :-

Let A and B are $g^{**}\beta$ - closed set in X. Then $A \subseteq U$, U is $g^*\beta$ - open set and $B \subseteq U$, U is a $g^*\beta$ - open. Hence, gcl (A) $\subseteq U$ and gcl (B) $\subseteq U$. Therefore, gcl(A \cup B) \subseteq gcl (A) \cup gcl (B) $\subseteq U \Rightarrow$ gcl(A \cup B) $\subseteq U$, U is a $g^*\beta$ - open set in X. Hence A \cup B is also a $g^{**}\beta$ - closed in X.

Theorem 3.16

If A and B are $g^{**\beta}$ -closed sets then A \cap B is also a $g^{**\beta}$ -closed in X.

Proof:- Let A and B are $g^{**}\beta$ -closed sets in X. Then $A \subseteq U$, U is a $g^*\beta$ - open set and $B \subseteq U$, U is a $g^*\beta$ - open set. Hence, gcl (A) \subseteq U and gcl (B) \subseteq U. Therefore, gcl(A \cap B) \subseteq gcl (A) \cap gcl (B) \subseteq U \Rightarrow gcl(A \cap B) \subseteq U, U is a $g^*\beta$ - open set in X. Hence A \cap B is also a $g^{**}\beta$ - closed in X

Proposition 3.17

Every $g^{**\beta}$ -closed set is

- (1)rg-closed
- (2)gp-closed
- (3)gpr-closed
- (4)gsp-closed
- (5)wg-closed

Proof follows from the definition The converse of the above theorem need not be true .Refer below example

Example 3.18

Let X={a,b,c,d} , $\tau = \{\emptyset, X, \{a\}, \{a,b\}, \{c,d\}, \{a,c,d\}\}$, then A={b,c} is gpr – closed set and rg- closed set but not g* β - closed set

Example 3.19

Let $X = \{a,b,c,d\}, \tau = \{\emptyset, X, \{a\}, \{c\}, \{d\}, \{a,c\}, \{c,d\}, \{a,c,d\}, \{a,d\}\}$ then $A = \{a,b,c\}$ is a gp-closed ,wg- closed and a gsp- closed set but a g**\beta-closed set of (X, τ)

Remark 3.20

The Above results and examples are summarized as follows $A \rightarrow B$ represent A implies B and $A \rightarrow B$ represent A does not implies B.

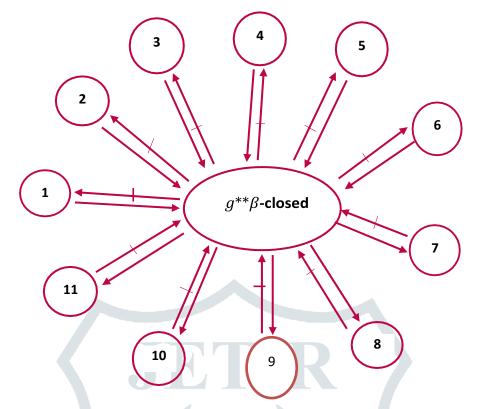


Figure .1.1 Relation between $g^{**}\beta$ - closed set with other known existing sets

1. Closed set	2. β - closed	3.α- closed	4.g- closed	5. g^* - closed	6.g**- closed	7. rg - closed
8. gp - closed	9.wg-closed	10. gpr- closed	11.gs <mark>p - close</mark> d			

Therorem 3.21

If A and B are two $g^{**\beta}$ -closed sets in a Topological space X such that either A \subseteq B or B \subseteq A then both intersection and union of two $g^{**\beta}$ -closed set is $g^{**\beta}$ -closed set.

Proof :- If $A \subseteq B$ or $B \subseteq A$ then $A \cup B = B$ or $A \cup B = A$ respectively. Therefore $A \cup B$ is $g^{**}\beta$ -closed as A and B are $g^{**}\beta$ -closed sets. Similarly, $A \cap B$ is also a $g^{**}\beta$ -closed sets

Remark 3.22

Difference of two $g^{**\beta}$ -closed sets is not a $g^{**\beta}$ -closed set.

Let $X = \{a,b,c,d\}$, $\tau = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}\}$. Here $A = \{1,2,4\}$ and $B = \{2,4\}$ are $g^{**}\beta$ -closed sets but $A - B = \{a\}$ is not.

REFERENCES

- 1) M.K.R.S.Veerakumar, Between closed sets and g-closed sets, Mem . Fac.Sci.koch.Univ.Ser.A, Math., 17(19916), 33-42
- 2) P.Bhattacharaya and B.K.lahiri, Semi- generalized closed sets in topology ,India J.Math., 29 (3) (1987), 375-382
- 3) J.Dontchev, On generalizing semi pre open set, Mem. Fac. Sci. Kochi Ser. A, Math., 16 (1995), 35-48
- 4) Y.Gnanambal, On generalized preregular closed sets in Topological spaces, Indian J.Pune .Appl.math., 28 (3) (1997), 351-360.
- 5) H.Maki,J.Umehara and T.Noiri, every Topological space in Pre-T ¹/₂,Mem.Fac.Sci.kochi University.Ser.A,Math.,17(1996), 33-42
- 6) Dr.A.Punitha tharani and Sujith .H, The concept of g^{β} -closed sets in Topological spaces ,11(04) (2020), 14-23
- 7) N.Palaniappan and K.C.Rao, Regular generalized closed sets, Kyungpook Math.J.,33(2) (1993), 211-219

 JETIR2303805
 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org

 i33

- 8) N.Levine ,Generalized closed sets in Topology,Rend.Circ Mat.Palermo,19(2)(1970),89-96
- Pauline Mary Helen M, g**-closed sets in Topological spaces, International Journal of Mathemathical Archive-3(5),2012,2005-2019.
- 10) D.Andrijevic, Semi-pre open sets, Mat.Vesnik, 38(1)(1986)(24-32)
- 11) N.Levine, Semi-open sets and semi-continuity in Topological spaces ,70(1963),36-41
- 12) N.Levine, Generalized closed sets in Topology, Rend, Circ Mat.Palermo, 19 (2) (1970), 89-96.
- 13) S.P.Arya. and T.M.Nour, Characterizations of s-normal spaces, Indian J.Pune .Appl.Math ., 21 (8), 717-719, 1990
- 14) A.S.Mashhour ,M.E.Abd E1-Monsef and S.N.E1-Deeb, On pre-continuous and week pre continuous mappings, Proc.Math.and Phys. Soc.Egypt, 53(1982), 47-53.

